Theory of photon coincidence statistics in photon-correlated beams

نویسندگان

  • Majeed M. Hayat
  • Sergio N. Torres
  • Leno M. Pedrotti
چکیده

The statistics of photon coincidence counting in photon-correlated beams is thoroughly investigated considering the effect of the finite coincidence resolving time. The correlated beams are assumed to be generated using parametric downconversion, and the photon streams in the correlated beams are modeled by two partially correlated Poisson point processes. An exact expression for the mean rate of coincidence registration is developed using techniques from renewal theory. It is shown that the use of the traditional approximate rate, in certain situations, leads to the overestimation of the actual rate. The error between the exact and approximate coincidence rates increases as the coincidence-noise parameter, defined as the mean number of uncorrelated photons detected per coincidence resolving time, increases. The use of the exact statistics of the coincidence becomes crucial when the background noise is high or in cases when high precision measurement of coincidence is required. Such cases arise whenever the coincidence-noise parameter is even slightly in excess of zero. It is also shown that the probability distribution function of the time between consecutive coincidence registration can be well approximated by an exponential distribution function. The well-known and experimentally verified Poissonian model of the coincidence registration process is therefore theoretically justified. The theory is applied to an on-off keying communication system proposed by Mandel which has been shown to perform well in extremely noisy conditions. It is shown that the Ž . bit-error rate BER predicted by the approximate coincidence-rate theory can be significantly lower than the actual BER obtained using the exact theory. q 1999 Elsevier Science B.V. All rights reserved. PACS: 42.50.A; 42.50.L; 42.50

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the origin of divergences in the coincidence probabilities in cavity photodetection experiments

The theory of photon correlation is an established part of quantum electronics. However, recently reported divergences in the theory of time correlated detection of photons show that important details of cavity photon statistics are still incompletely understood. The quantum jump superoperators of the SD photon counting model given by Srinivas and Davies (1981 J. Mod. Opt. 28 981–96 ) do not fu...

متن کامل

The Impact of Nano-Sized Gold Particles on the Target Dose Enhancement Based on Photon Beams Using by Monte Carlo Method

Objective(s): In this study we evaluate the impact of the different aspects of Gold Nano-Particles (GNPs) on the target absorptive Dose Enhancement Factor (DEF) during external targeted radiotherapy with photon beams ranging from kilovolt to megavolt energies using Monte Carlo simulation. Methods: We have simulated the interaction of photon beams wi...

متن کامل

Monte Carlo Study of Unflattened Photon Beams Shaped by Multileaf Collimator

Introduction: This study investigates basic dosimetric properties of unflattened 6 MV photon beam shaped by multileaf collimator and compares them with those of flattened beams.Materials and Methods: Monte Carlo simulation model using BEAM code was developed for a 6MV photon beam based on Varian Clinic 600 unique performance linac operated with and without a flattening filter in beam line. Dosi...

متن کامل

An assessment of the Photon Contamination due to Bremsstrahlung Radiation in the Electron Beams of a NEPTUN 10PC Linac using a Monte Carlo Method

Introduction: In clinical electron beams, most of bremsstrahlung radiation is produced by various linac head structures. This bremsstrahlung radiation dose is influenced by the geometry and construction of every component of the linac treatment head structures. Thus, it can be expected that the amount of the contaminated photon dose due to bremsstrahlung radiation varies among different linacs,...

متن کامل

Monte Carlo Simulation of Siemens Primus plus Linac for 6 and 18 MV Photon Beams

Objective: The aim of the present study is to simulate 6 MV and 18 MV photon beam energies of a Siemens Primus Plus medical linear accelerator (Linac) and to verify the simulation by comparing the results with the measured data.Methods: The main components of the head of Siemens Primus Plus linac were simulated using MCNPX Monte Carlo (MC) code. To verify the results, experimental data of perce...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999